Корзина (0)
В корзине пусто!
Рауш эффект – понятие, условия возникновения и классификация отложений

Рауш эффект – понятие, условия возникновения и классификация отложений

688
0
7 Января, 2020

Рауш Эффект – классификация отложений

Вы только что смонтировали абсолютно новую и чистую систему водоподготовки из нержавеющей стали. Вы запускаете процесс, будучи уверенными, что ваши проблемы с загрязнением прошли. Но через несколько месяцев в пробе воды появилось красное желатиновое вещество в колбе для пробы. Вы открываете систему, и на резервуаре появился красноватый налет по всей внутренней поверхности. Вы открываете насос, рабочая часть также красного цвета и улитка красного цвета. Вы смотрите в теплообменник и видите везде красный налет. Форсунки высокого давления имеют красные полосы вокруг отверстий. Что пошло не так? Почему хорошая нержавеющая сталь становится красной?

Понятие рауш эффекта (ружинг)

Ружинг эффект на нержавеющей стали является результатом образования оксида, гидроксида или карбоната железа из внешних источников либо из-за разрушения пассивного слоя. Изменение цвета является результатом типа оксид / гидроксид / карбонат и изменений в воде гидратации, связанных с продуктами коррозии. Эти цвета варьируются от оранжевого, красного и даже черного.

Ярко-красные полосы на поверхности нержавеющей стали, как правило, являются результатом загрязнения железом в результате соприкосновения с углеродистой сталью, от ее сварки в непосредственной близости от нержавеющей стали, от загрязненных железом шлифовальных кругов или щеток из стальной проволоки.

В неочищенной воде изменение цвета может быть результатом окисления бикарбоната железа в воде с образованием коричневато-красных отложений. Это окисление также может происходить от добавления хлора или растворенного кислорода.

В системах с высокой степенью очистки воды ржавчина (Рауш Эффект) может быть трех типов:

  • Рауш Эффект класса I – происходящий из внешних источников, обычно из-за эрозии или кавитации поверхностей насоса;
  • Рауш Эффект класса II – происходящий от вызванной хлоридом коррозии поверхностей нержавеющей стали;
  • Рауш Эффект Класса III – синий или черный, встречается в высокотемпературных паровых системах.

При каких условиях возникает Рауш Эффект

Это явление может возникать в чистой воде, сверхчистой воде, паре, очищенной питьевой воде или необработанной технической воде. Основным фактором возникновения ружинг эффекта явлется загрязнение железом.

Загрязнение железом

Перетаскивание или волочение нержавеющей стали по поверхности углеродистой стали (или наоборот) приводит к попаданию частиц железа на поверхность нержавейки, что неминуемо приведет к ржавчине при вводе в эксплуатацию. Приварка временных скоб из углеродистой стали к нержавеющей стали, а затем шлифовка сварных швов приводит к образованию области с низким содержанием хрома, которая также будет ржаветь при эксплуатации. Использование проволочных щеток из углеродистой стали или шлифовальных кругов, загрязненных углеродистой сталью, приведет к ржавчине.

Механизм образования красной ржавчины прост:

Железо + вода = ржавчина

Лучшая профилактика образования ржавчины – это здравый смысл:

  • Всегда покрывайте все поверхности из углеродистой стали деревом, пластиком или картоном, чтобы предотвратить контакт с нержавеющей сталью;
  • Никогда не приваривайте углеродистую сталь к нержавеющей стали;
  • Всегда используйте щетки из нержавеющей стали и специальные шлифовальные круги "только из нержавеющей стали";
  • Всегда проводите химическое травление и пассивацию нержавеющей стали специальными растворами перед вводом в эксплуатацию.

Ржавчина может привести к щелевой коррозии или питтинговой (точечной) коррозии нержавеющей стали под слоем оксида красного цвета, поэтому ее необходимо своевременно удалять. Вот почему пассивация необходима не только для увеличения отношения хрома к железу на поверхности, но и для удаления любого загрязнения железом.

Обработанные и неочищенные воды

"Покраснеть" может оборудование как при использовании очищенной, так и неочищенной, даже смягченной воды. В первую очередь, причиной является то, что в воде находится бикарбонат железа. Смягчение не удаляет анионы, такие как карбонат, бикарбонат, сульфаты, хлориды и т. д., а только обменивает катионы, такие как кальций и магний, на натрий или калий. В отличие от карбоната железа, бикарбонат железа полностью растворим, но при этом легко окисляется до карбоната железа. Карбонат железа не растворим и имеет красновато-коричневый цвет. Может растворяться в сильных кислотах.

Подготовленная или питьевая вода обычно очищается для удаления взвешенных частиц, фильтруется для удаления мелких частиц и дезинфицируется хлором или диоксидом хлора для уничтожения большинства бактерий. Этот процесс практически не влияет на ион бикарбоната, если он находится в равновесии с трубами из углеродистой стали, и в среде низкое содержание кислорода. Как только вода попадает в инертную среду, такую как нержавеющая сталь или фарфор, бикарбонат начинает окисляться:

2Fe (HCO3) 2 + Ca (HCO3) 2 + Cl2 -> 2Fe (OH) 3 + CaCl2 + 6CO2

2Fe (OH) 3 -> Fe2O3 .H2O + 2H2O

Оксид железа Fe2O3 .H2O имеет красный цвет, а когда он встречается в природе, его называют гематитом. В необработанной воде химическая реакция аналогична, за исключением того, что хлора нет, а растворенный в воде кислород является активным веществом:

6Fe (HCO3) 2 + O2 -> 2Fe2 (CO3) 3 + 2Fe (OH) 2 + 4H2O + 6CO2

4Fe (OH) 2 + O2 -> 2Fe2O3 .H2O + 2H2O

Карбонат железа будет выпадать в осадок, а гидроксид железа образует гелеобразное соединение, которое осаждается в виде оксида железа. Есть небольшая разница в цвете, потому что железный гидроксид желтый. В больших резервуарах самые красные отложения обычно находятся наверху и уменьшаются в направлении дна. Нередко дно большого резервуара бывает относительно чистым.

Очищенная и высокоочищенная вода

Очищенная и высокоочищенная вода обычно используются в отраслях промышленности, где примеси могут оказывать вредное воздействие: в фармацевтическом, косметическом или полупроводниковом производстве. В фармацевтической промышленности это называется вода для инъекций (WFI). Типичные обработки включают фильтрацию, смягчение, анионный и катионный ионный обмен, обратный осмос, ультрафиолет и иногда озонирование. Дистилляция может быть использована в качестве окончательной очистки. В результате получается вода с крайне низкой проводимостью.

Нержавеющая сталь марки 316L является обычным материалом оборудования, емкостей и трубопроводов в этих промышленностях. Некоторые из этих систем остаются чистыми, но другие начинают подвергаться появлению красного налета (Рауш Эффект). Даже электрополированные системы со средней шероховатостью поверхности менее 10 микродюймов (<10 м-в Ra) могут покрываться осадком. В присутствии горячего пара высокой чистоты эти системы становятся черными, иногда глянцевыми, иногда порошкообразными.

Классификация отложений при Рауш эффекте

Секции нержавеющих труб с красным налетом были получены из ряда различных систем чистой воды и пара. Красные хлопьеобразные осадки были исследованы с использованием:

  • Рентгеновской фотоэлектронной спектроскопии (XPS) – позволяет послойно анализировать отложения хлопьев и идентифицировать молекулярные частицы;
  • Энергодисперсионной спектроскопии (EDS) – позволяет проводить точечный анализ поверхностных аномалий;
  • Сканирующей электронной микроскопии (SEM) – позволяет визуально исследовать поверхность.

Эта работа позволила классифицировать отложения в чистой и высокоочищенной воде и паре как отложения класса I, II и III в зависимости от механизма формирования.

Отложения класса I (Рауш эффект класса I)

Отложения класса I происходят от влияния из внешнего источника. Частицы хлопьев осаждаются на поверхностях из нержавеющей стали, и на ранних стадиях осаждения могут быть легко вытерты ветошью. Состав поверхности пассивного слоя нержавеющей стали под отложением ржавчины не отличается от состава первоначально установленной системы. Частицы отложений обычно имеют тот же состав, что и материал, из которого они получены. Концентрация отложений самая интенсивная вблизи источника и уменьшается по мере удаления от источника. Цвет отложений может изменяться с расстоянием от источника, от оранжевого до красно-оранжевого возле источника и от пурпурного на некотором расстоянии. Цвет зависит от присутствия различных оксидов и гидроксидов железа. Оранжевый оксид является самым низко валентным состоянием для гидроксида железа и образуется, когда присутствуют и кислород, и вода:

2Fe0 + 2H2O -> 2FeO (OH) + H2

2FeO (OH) -> Fe2O3.H2O

Внешние отложения могут исходить из ряда источников. Наиболее очевидной является использование углеродистой стали в системе, включая рулевые тяги, болты, гайки, ключи, скобы и т.д. Чем больше источник, тем больше будет отложений.

Насосы – главные подозреваемые в образовании вредных частиц в абсолютно "чистых" системах.
По-видимому, причиной эффекта рауш, вызванного насосом, являются два механизма:

  1. Кавитация.

    Кавитация обычно является результатом недостаточной подачи воды в насос, неправильного выбора насоса, работы или чрезмерного дросселирования во время работы. Пузырьки ударяются о поверхность насоса и взрываются, в результате чего возникает ударная волна, которая удаляет мелкие частицы нержавеющей стали. Как только частица высвобождается в потоке воды, она в конечном итоге присоединяется к трубопроводу из нержавеющей стали за счет электростатического притяжения. Поскольку поверхность частицы не пассивирована, она немедленно начинает окисляться и краснеть.

  2. Эрозия из-за скорости вращения рабочей крыльчатки.

    Каждый материал имеет критическую скорость, выше которой ускоряется эрозия. Для низколегированных аустенитных нержавеющих сталей эта критическая скорость составляет около 100 в секунду. Скорость эрозии будет зависеть от температуры. Нержавеющая сталь типа 304, по-видимому, имеет постоянную скорость эрозии до 600°F (300°C), а затем быстро увеличивается. Конкретные данные по чистоте воды для различных сплавов отсутствуют.

    Похоже, что металлургическое состояние рабочей крыльчатки влияет на скорость удаления металла. Когда аустенитное семейство нержавеющей стали затвердевает из сплава, присутствуют две металлургические фазы: аустенит и дельта-феррит. Образование дельта-феррита зависит от состава сплава, и, если оно составляет менее 8%, его можно растворить путем термической обработки. Литые рабочие крыльчатки обычно имеют высокий дельта-феррит из-за более высокого содержания кремния, добавляемого для обеспечения текучести стали во время литья. Это означает, что термическая обработка может не растворить весь дельта-феррит. Причина, по которой дельта-феррит является проблемой, заключается в том, что он разрушается легче, чем аустенит, и содержит больше железа. Эрозионная поверхность литой рабочей крыльчатки показана на рисунке.

Отложения класса II (Рауш эффект класса II)

Этот класс отложений возникает, когда присутствуют хлориды или другие галогениды. По причине коррозии формируется на поверхности нержавеющей стали в местах, где нарушен пассивный слой. Чаще встречается на технологических линиях, не прошедших процедуру химической пассивации после монтажа, и механически отполированных поверхностях. Когда анализируются изделия с этим классом отложений, на них обычно присутствуют хлориды или другие галогениды. Отложения II класса, в отличие от I класса, невозможно удалить просто протирая ветошью, в данном случае поможет лишь шлифовка или полировка, но лучше всего для удаления использовать кислотные растворы. Наша компания использует для обработки специализированные растворы для обработки и восстановления нержавеющей стали, но, если присутствуют хлориды, поверхность снова станет красной.

Отложения II класса образуются в реакции, состоящей из двух стадий:

  1. Растворение пассивного слоя оксида хрома:

    Cr2O3 + 6Cl- + 6H2O -> 2CrCl3 (водный) + 6OH-

  2. Окисление частиц железа на поверхности:

    2Fe + 4H2O -> 2FeO (OH) + 3H2

Эта реакция является самосохраняющейся реакцией хлорида с хромом с образованием хлорноватистой кислоты в качестве побочного продукта и хлорноватистой кислоты, окисляющей железо и образующей больше хлорида.

Увеличение содержания молибдена в составе нержавеющей стали повышает устойчивость к воздействию хлоридов. Аналогично, замена железа в нержавеющей стали на никель улучшает коррозионную стойкость. Это прогрессирование сплавов с повышенной устойчивостью к воздействию хлоридов: тип 304L (минимум), тип 316L, тип 317L, тип 317LM, сплав 625, сплавы C-276 и C 22 (высший). Всякий раз, когда система из нержавеющей стали вступает в контакт с хлорангидридом, существует вероятность образования отложений. Раствор с pH > 7 будет иметь меньшую вероятность образования отложений, чем pH < 7. Даже кратковременное воздействие раствора хлорангидрида кислоты может подготовить почву для реакции такого типа, особенно если поверхность нержавеющей стали имеет высокую шероховатость. Механически полированные поверхности хуже, чем электрополированные, из-за микроскопических трещин, возникающих в результате "размазывания" металла в результате операции полировки. Электрохимическая полировка удаляет эти микроскопические трещины и создает пассивный слой с более высоким отношением Cr / Fe. Микротрещины создают концентрационные ячейки, в которых растворы хлорангидрида кислоты могут оставаться и продолжать реагировать, даже если система подвергается промывке с высоким pH. Использование средств с высоким содержанием поверхностно-активных веществ при промывке производственных линий поможет в удалении хлорида.

Отложения класса III (Рауш эффект класса III)

Этот тип отложений – черный, а не красный, и образуется в присутствии пара высокой температуры. При начальном формировании цвет отложений – синий, затем становится черным, поскольку слой растет до предельной толщины, которая предотвращает дальнейшую диффузию кислорода. Данный тип отложений может присутствовать в паровых системах высокой чистоты, которые работают при повышенных температурах. На электрополированной нержавеющей стали внешний вид глянцевый черный, а на оборудовании непрошедшем химическую пассивацию и при этом механически полированном может быть порошкообразным черным. Анализ с использованием XPS показывает, что эта пленка представляет собой сесквиоксид железа, обычно называемый магнетитом. Он не может быть удален простой очисткой, его необходимо удалять химическим путем или шлифовкой. Если отложения черные, то их вообще не обязательно подвергать какой-либо обработке и можно просто оставить в покое, так как они достаточно устойчивы. Порошкообразная черная пленка может отслоиться и, возможно, в этом случае стоит задуматься об очистке. После химической очистки данного типа отложений, внутренняя поверхность оборудования должна быть подвержена химической пассивации. Как только система вернется в строй, она скорее всего снова почернеет, но не будет образовывать порошковую черную пленку.

Этот тип отложений является высокотемпературным продуктом реакции пара с железом в магнетите, образующим нержавеющую сталь. Реакция происходит в два этапа:

3Fe0 + H2O -> FeO + Fe2O3 + H2

FeO + Fe2O3 -> Fe3O4

Некоторая часть оксида железа может быть заменена оксидом никеля, но сесквиоксид железа будет контролировать цвет пленки.

688
0
7 Января, 2020
Ваш комментарий будет первым